Predictive Direct Flux Control—A New Control Method of Voltage Source Inverters in Distributed Generation Applications
نویسندگان
چکیده
Abstract: Voltage source inverters (VSIs) have been widely utilized in electric drives and distributed generations (DGs), where electromagnetic torque, currents and voltages are usually the control objectives. The inverter flux, defined as the integral of the inverter voltage, however, is seldom studied. Although a conventional flux control approach has been developed, it presents major drawbacks of large flux ripples, leading to distorted inverter output currents and large power ripples. This paper proposes a new control strategy of VSIs by controlling the inverter flux. To improve the system’s steady-state and transient performance, a predictive control scheme is adopted. The flux amplitude and flux angle can be well regulated by choosing the optimum inverter control action according to formulated selection criteria. Hence, the inverter flux can be controlled to have a specified magnitude and a specified position relative to the grid flux with less ripples. This results in a satisfactory line current performance with a fast transient response. The proposed predictive direct flux control (PDFC) method is tested in a 3 MW high-power grid-connected VSI system in the MATLAB/Simulink environment, and the results demonstrate its effectiveness.
منابع مشابه
Design and Implementation of a New Switch-Diode based Single Source Multilevel Inverter Topology
Multilevel inverters are a new generation of DC-AC converters at medium and high voltage and power levels. These converters have made great strides in the use of industrial applications compared to conventional two-level inverters due to lower harmonic distortion, filter size, EMI and dv/dt. Besides these merits, some disadvantages can be mentioned such as more power electronics devices and com...
متن کاملSensorless Model Predictive Force Control with a Novel Weight Coefficients for 3-Phase 4-Switch Inverter Fed Linear Induction Motor Drives
The sensorless model predictive force control (SMPFC) is a strong method for controlling the drives of three-phase 4(6)-switch inverter linear induction motors. This kind of inverter can be employed for fault tolerant control in order to solve the problem of open/short circuit in 6-switch inverters (B6). This paper proposed a method for the SMPFC of a linear induction motor (LIM) with a 4-switc...
متن کاملA Combined Vector and Direct Power Control for AC/DC/AC Converters in DFIG Based Wind Turbine
The doubly-fed generators (DFIG) have clear superiority for the applications of large capacity and limited-range speed control case due to the partially rated inverter, lower cost and high reliability. These characteristics enable the doubly-fed wound rotor induction machine to have vast applications in wind-driven generation.In this paper Combined Vector and direct power control (CVDPC) strate...
متن کاملImproved Direct Torque Control for Induction Machine Drives Based on Fuzzy Sector Theory
Here, a new fuzzy direct torque control algorithm for induction motors is proposed. As in the classical direct torque control, the inverter gate control signals directly come from the optimum switching voltage vector look-up table, the best voltage space vector selection is a key factor to obtain minimum torque and flux ripples. In the proposed approach, the best voltage space vector is sel...
متن کاملSuggested New Voltage and Frequency Control Framework for Autonomous Operation of Microgrids
Decentralized control strategies are popular candidates in microgrids control because of their reliability and performance. Conventionally, droop control (as a main decentralized strategy) is been utilized in order to prevent permanent droop of voltage and frequency after change in loads and also to share generated power between distributed generation units. In this paper, a new droop control s...
متن کامل